The Strain Dependence of Post-Deformation Softening during the Hot Deformation of 304H Stainless Steel
Authors
Abstract:
Experiments were carried out in which the dependence of the fractional softening on temperature, time and strain rate was determined in a 304H stainless steel. Three prestrain ranges were identified pertaining to three different post-deformation softening behaviors: 1) prestraining to below the DRX critical strain: strongly strain dependent softening by SRX alone with softening kinetics controlled by growth rate of the nuclei; 2) prestraining to above the DRX critical strain: SRX + MDRX softening with weaker strain dependence of the kinetics but still controlled by grain growth; 3) at a prestrain of e* and beyond: nucleation-controlled MDRX softening with the full inhibition of SRX. The transition prestrain e* can exceed the peak strain if the DRX grain refinement ratio g= D0/DDRX > 4. The transition to MDRX-dominated softening can be attributed to a constant value of the normalized strain hardening rate independent of the preloading temperature and strain rate. The softening data from the compression tests show that at e*, the time for half softening t50 exhibits a minimum. These data differ somewhat from observations obtained in the torsion testing of solid bars, in which no strain dependence of t50 was detected at e* and beyond. Whether or not the strain dependence of t50 vanishes in the MDRX range is sensitive to the test method employed to study the post-deformation softening.
similar resources
the strain dependence of post-deformation softening during the hot deformation of 304h stainless steel
experiments were carried out in which the dependence of the fractional softening on temperature, time and strain rate was determined in a 304h stainless steel. three prestrain ranges were identified pertaining to three different post-deformation softening behaviors: 1) prestraining to below the drx critical strain: strongly strain dependent softening by srx alone with softening kinetics control...
full textPREDICTION OF HOT DEFORMATION BEHAVIOUR OF A PH STAINLESS STEEL AT HIGH STRAIN RATES
In this study the hot deformation behaviour of a precipitation hardened (PH) stainless steel at high strain rates has been predicted through hot compression testing. Stress-strain curves were obtained for a range of strain rates from 10-3 to 10+1 S-1 and temperatures from 850 to 1150°C. Results obtained by microstructure and stress-strain curves show that at low temperatures and high strain rat...
full textDynamic Recrystallization under Hot Deformation of a PH Stainless Steel
Dynamic recrystallization, DRX, behaviour of a precipitation hardened, PH, stainless steel was studied in connection with microstructural developments in a compression test. The experimental results showed that the dominant mechanism of softening is DRX, but at high strain rates and low temperatures, ie, high Zener-Holman parameter, Z, work hardening and dynamic recovery, DRV, produced a pancke...
full textHot Deformation Behavior of 17-7 PH Stainless Steel
To investigate the hot deformation behavior of 17-7 PH stainless steel, hot compression tests were carried out at the temperatures of 950, 1050 and 1150 oC and strain rates of 0.001 s-1 to 0.1 s-1. Accordingly, the hot working behavior was studied by the analyses of flow stress curves, work hardening rate versus stress curves, exponent- type constitutive equations and deformed microstructures. ...
full textEffect of Changing Strain Rate on Flow Stress during Hot Deformation of Type 316L Stainless Steel
In industrial rolling, changes in strain rate and temperature occur with strain during passes, and between one pass and the next. Plane strain compression testing has been used with ramped changes in strain rate during deformation, and with changes in strain rate between two deformations to study their effects on flow stress. No systematic deviations from a mechanical equation of state were fou...
full textDynamic Recrystallization by Necklace Mechanism During Hot Deformation of 316 Stainless Steel
The aim of this study is to investigate the nucleation of new grains by necklacing mechanism during dynamic recrystallization (DRX). The material used is 316 stainless steel. In order to modeling the deformation behavior during hot rolling, one-hit compression tests were performed at temperature range of 950-1100 °C with strain rates of 0.01-1s-1. The result shows that at the tempera...
full textMy Resources
Journal title
volume 3 issue 1
pages 1- 7
publication date 2006-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023